TOAR-II Activities

Roeland Van Malderen¹, Herman G.J. Smit², Irina Petropavlovskikh^{3,4}, Thierry Leblanc⁵, Corinne Vigouroux⁶, Valérie Thouret⁷, Owen Cooper⁸, Kai-Lan Chang^{3,8}, Anne M. Thompson^{9,10}, Ryan M. Stauffer⁹, Debra E. Kollonige^{10,11}, Eliane Maillard Barras¹², Robin Bjorklund⁶, Peter Effertz⁴, Pawel Wolff¹³, Zhou Zang¹⁴, Jane Liu¹⁴, David W. Tarasick¹⁵, Daan Hubert⁶, Audrey Gaudel^{3,8}

¹Royal Meteorological Institute of Belgium, ²Forschungszentrum Jülich , ³CIRES, University of Colorado, ⁴NOAA Global Monitoring Laboratory, ⁵NASA Jet Propulsion Laboratory, California Institute of Technology, ⁶Royal Belgium Institute for Space Aeronomy, ⁷Laboratoire d'Aérologie, Université Toulouse III – Paul Sabatier, CNRS, ⁸NOAA Chemical Sciences Laboratory, ⁹NASA Goddard Space Flight Center, ¹⁰GESTAR, University of Maryland, ¹¹Science Systems and Applications, Inc, Lanham ¹²Federal Office of Meteorology and Climatology MeteoSwiss, ¹³Observatoire Midi-Pyrénées, Université Toulouse III – Paul Sabatier, CNRS, ¹⁴Department of Geography and Planning, University of Toronto, ¹⁵Environment and Climate Change Canada

http://hegiftom.meteo.be/

NDACC SC Meeting, Santiago de Chile, 11-15 November 2024

tropospheric

ozone

Tropospheric Ozone Assessment Report, Phase II

TOAR Database: Updated with all recent ozone observations worldwide; add ozone precursors and meteorological data.

Final Product: An observation-based assessment of tropospheric ozone's distribution and trends on regional, hemispheric and global scales

(modelled after IPCC Working Group I)

Impact studies: will quantify the *impacts* of ozone on human health, vegetation and climate (modelled after IPCC Working Group II)

TOAR-II Focus Working Groups

New research is being led by 16 independent Focus Working Groups:

Chemical Reanalysis Focus Working Group East Asia Focus Working Group **Global and Regional Models** Focus Working Group **HEGIFTOM** Focus Working Group Human Health Focus Working Group Machine Learning for Tropospheric Ozone Focus Working Group **Ozone over the Oceans** Focus Working Group **Ozone and Precursors in the Tropics (OPT)** Focus Working Group **Ozone Deposition** Focus Working Group **Radiative Forcing** Focus Working Group **ROSTEES** Focus Working Group Satellite Ozone Focus Working Group South Asia Focus Working Group **Statistics** Focus Working Group Tropospheric Ozone Precursors (TOP) Focus Working Group **Urban Ozone** Focus Working Group

TOAR-II Focus Working Groups

New research is being led by 16 independent Focus Working Groups:

Chemical Reanalysis Focus Working Group East Asia Focus Working Group **Global and Regional Models** Focus Working Group **HEGIFTOM** Focus Working Group Human Health Focus Working Group Machine Learning for Tropospheric Ozone Focus Working Group **Ozone over the Oceans** Focus Working Group **Ozone and Precursors in the Tropics (OPT)** Focus Working Group **Ozone Deposition** Focus Working Group **Radiative Forcing** Focus Working Group **ROSTEES** Focus Working Group Satellite Ozone Focus Working Group South Asia Focus Working Group **Statistics** Focus Working Group **Tropospheric Ozone Precursors (TOP)** Focus Working Group **Urban Ozone** Focus Working Group

Introduction to TOAR-II Focus Working Group: HEGIFTOM

Harmonization and Evaluation of Ground-based Instruments for Free Tropospheric Ozone Measurements, *chairs: Herman Smit & Roeland Van Malderen*

Key Objective:

Evaluation and harmonization of the different free tropospheric ozone profiling datasets of the established measuring platforms (in-service aircraft, ozonesondes, Brewer/Dobson Umkehr, FTIR, Lidar).

Major Deliverable: <u>Quality assessed</u> ozone data sets, whereby each measurement gets also an <u>uncertainty</u> and a <u>quality flag</u>. Thereby, <u>representativeness</u> and <u>instrumental drifts</u> will be characterized and evaluated.

Ozonesondes

Lidar

MAX-DOAS & Pandora

http://hegiftom.meteo.be/datasets

Introduction to TOAR-II Focus Working Group: HEGIFTOM

Harmonization and Evaluation of Ground-based Instruments for Free Tropospheric Ozone Measurements, *chairs: Herman Smit & Roeland Van Malderen*

Key Objective:

Evaluation and harmonization of the different free tropospheric ozone profiling datasets of the established measuring platforms (in-service aircraft, ozonesondes, Brewer/Dobson Umkehr, FTIR, Lidar).

Major Deliverable: <u>Quality assessed</u> ozone data sets, whereby each measurement gets also an <u>uncertainty</u> and a <u>quality flag</u>. Thereby, <u>representativeness</u> and <u>instrumental drifts</u> will be characterized and evaluated.

http://hegiftom.meteo.be/datasets

Achievements and updates:

- IAGOS:
 - o internal consistency paper published in AMT (Blot et al., <u>https://doi.org/10.5194/amt-14-3935-2021</u>),
 - simulation chamber comparison of IAGOS-CORE UV-photometer and reference photometer for ozonesondes (Smit et al., in preparation)
- Lidar: TMF data has been updated with new data processor, OHP will follow
- **FTIR:** flagging applied to the NDACC data
- Brewer/Dobson Umkehr:
 - 6 Dobson Umkehr sites have been homogenized (Petropavlovskikh et al., <u>https://doi.org/10.5194/amt-15-1849-2022</u>)
 - Updated uncertainty estimation of the retrievals.
- ozonesondes:
 - 12 more sites homogenized, e.g. OHP, Lauder, Arctic sites (10-15/55 remaining)
 - homogenized data available on ftp-server

Homogenized datasets

Deliverable: Homogenized free tropospheric ozone profile data, described at HEGIFTOM website, with same template for each dataset:

Availability

location (ftp, data archive, website, doi, e-mail address contact person, etc.).

Data field description

Measured data fields (and their units), incl. auxiliary data fields, available metadata. Data format

Description of homogenization procedure

short description of the steps taken to make the dataset (more) homogeneous within the network.

Data management

- Flagging
- Uncertainties
- Traceability
- Internal consistency
- External consistency
- Data quality indicators
- List of homogenized sites (name, geographical location, period of observations)

https://hegiftom.meteo.be/datasets

NDACC SC Meeting, Santiago de Chile, 11-15 November 2024

Homogenized datasets

Deliverable: time series of different (partial) tropospheric ozone column amounts

- 1. P > P_TP (WMO)
- 2. P > P (lat) (e.g. 150 hPa @ tropics, 400 hPa in polar regions)
- 3. P > 300 hPa
- 4. FT: 4 < h < 8 km AND 700 hPa > P > 300 hPa
- 5. LT: h < 4 km AND P > 700 hPa
- 6. BL: h < 2 km
- for all sites/techniques, if feasible
- provided for all measurements (L1), together with daily means (L2) and monthly means (L3)
- available in DU or ppb
- uncertainties included (random, systematic, total, statistical)
- simple csv files, with readme files per technique

https://hegiftom.meteo.be/datasets/tropospheric-ozone-columns-trocs

the 2 recommended TOAR-II tropospheric ozone column definitions

Intercomparisons

tropospheric ozone assessment report

Phase

Deliverable: @ Lauder (Björklund et al., 2024), between IAGOS and sondes (Wang et al., 2024)

NDACC SC Meeting, Santiago de Chile, 11-15 November 2024

Intercomparisons

ozone assessment report

Phasell

NDACC SC Meeting, Santiago de Chile, 11-15 November 2024

- TOAR-II: tropospheric ozone trends assessment
- In literature:

Fig. 2.8 of IPCC AR6, 2021.

Satellite products:

Sat1 1979–2016 (TOMS, OMI/MLS) Sat2 1995–2015 (GOME, SCIAMACHY, OMI, GOME-2A, GOME-2B) Sat3 1995–2015 (GOME, SCIAMACHY, GOME-II)

- ✓ <u>Here</u>: focus on high-quality ground-based and in-situ measurements (individual sites + "merged")
- ✓ Consistency in tropospheric ozone column metric
 (here: surface to 300 hPa)
- ✓ Consistency in used trend estimation tools (QR vs. MLR)
- ✓ Consistency in time ranges (here: 2000-2002 till 2019-2022)

✓Consistency in units (ppbv/dec)

Individual site trends

Global Sites Contributing to HEGIFTOM (55 L1 Data) Trends 45°N 20°N 🖲 180°W 90°V 20°S O3S (34) stations • 45°S FTIR (10) stations Lidar (2) stations Umkehr (6) stations 70°S IAGOS (3) airports

- Sampling and gaps put constraints
- 55 sites

Individual site trends: QR median trends

• see more results in Debra Kollonige's talk tomorrow, Thursday!

Strategy for regionalized trends

Correlation maps between CAMS TrOC (sfc – 300 hPa) monthly Pearson r anomalies at HEGIFTOM sites (here: Frankfurt, IAGOS) r > 0.7!

- 1.0

- 0.9

- 0.7

- 0.6

Strategy for regionalized trends

Trends in defined regions with

- **TOST** (Trajectory-mapped
- Ozonesonde dataset for the
- Stratosphere and Troposphere):

ozonesondes only!

 \rightarrow Zang et al., accepted for ACP, 2024

Strategy for regionalized trends

1.0

Trends in defined regions with

TOST (Trajectory-mapped

regions

- Ozonesonde dataset for the
- Stratosphere and Troposphere):

ozonesondes only!

 \rightarrow Zang et al., accepted for ACP, 2024

Statistical method for calculating synthetized trends from wellcorrelated individual time series for <u>all instruments</u>, allowing an intercept and a slope to adjust the difference from each individual trend against the overall trends

All trends

background grey = individual site trends different colors = different regions open symbols = synthesized trends filled symbols = TOST regional trends

NDACC SC Meeting, Santiago de Chile, 11-15 November 2024

All trends

background grey = individual site trends different colors = different regions open symbols = synthesized trends filled symbols = TOST regional trends

ozòne assessmen report

- without NDACC, no HEGIFTOM
- HEGIFTOM data (O3S!!!) should feed back into NDACC
- Tropospheric ozone distribution and trends with ground-based data really pushed to the limits: best (possible) effort done.
- More results (post-COVID vs. pre-COVID, 1990/1995/2000 2022 trend comparisons, relative contribution of lower+free-tropospheric ozone column trends to entire tropospheric ozone column trends, TrOC seasonal cycle change, etc.):

- More results:
 - ✓ Debra Kollonige's talk tomorrow
 - Van Malderen et al., "Global Ground-based Tropospheric Ozone Measurements: Reference Data and Individual Site Trends (2000-2022) from the TOAR-II/HEGIFTOM Project" (working title), to be submitted to ACP (TOAR-II SI)
 - Van Malderen et al., "Global Ground-based Tropospheric Ozone Measurements: Regional tropospheric ozone column trends from the HEGIFTOM homogenized ground-based profile ozone datasets" (working title), to be submitted to ACP (TOAR-II SI)