Towards Probabilistic Extreme Rainfall Warnings for Belgium

F. Erdmann¹, D. R. Poelman¹, M. Van Ginderachter¹, L. De Cruz^{1,2}, R. Reinoso-Rondinel^{3,1}, V. Van Nieuwenhuize¹ ¹ Royal Meteorological Institute of Belgium, Brussels, Belgium, ² Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium, ³ Civil Engineering, Hydraulics & Geotechnics, KU Leuven, Leuven, Belgium

Motivation

Heavy rainfall and subsequent flooding can cause heavy damage or even fatalities in Western Europe, as recently demonstrated by the mid-July 2021 flood event. This project has the objective to

- > Improve the operational extreme rainfall warnings for Belgium
- \succ Go from a deterministic to a probabilistic system to assess uncertainties in the extreme rainfall nowcasting

Extreme rainfall return periods

Preliminary Results

The challenge: The figures should contain all the important information such as the return periods, the time of the events and the probability, but at the same time remain clear.

- ➤ Case study 2023-08-25 0700-1000 UTC
- Using MAR as precipitation-based covariate
- Observations (RADQPE)

Extreme rainfall is defined through Generalized Extreme Value (GEV) models based on long-term time series of rain gauge data [1], [2]:

- > Spatial variability is implemented into the GEV models by allowing model parameters to vary spatially through the introduction of covariates.
- Best covariates (Fig. 1): mean annual rainfall (MAR) and topography
- The return level z(T) is defined as the value that is exceeded, on average, once every T years.

Fig. 1: Covariates of the GEV models – a) MAR, b) Topography

 \blacktriangleright Return periods (T) define the time interval over which the return level is expected to recur. Longer return periods mean more extreme rainfall.

Fig. 2: RADQPE accumulation a) 0700-0800 UTC, b) 0900-1000 UTC

> 10-year return level exceedance probability with forecast history (grey)

Fig. 3: Probability of 1-hour rainfall exceeding 10-year return levels at a) 0745 UTC (45min forecast), b) 0830 UTC (90min forecast)

Exceedance probability for 4 return periods (colorbars)

PySTEPS-BE ensemble nowcast configuration

Built in the open-source nowcasting framework PySTEPS. Input:

- > Observations: Belgian radar-based quantitative precipitation estimation (RADQPE), 1km resolution, 5min frequency
- ▶ NWP: ALARO/AROME Mini-EPS at 1.3km, 5min accumulations Output:
- \blacktriangleright Forecast time step of 5min for up to +6 hours lead time
- > With a skill- and scale-dependent blending between observation and NWP [3]
- \geq 24-member ensemble run every 5min using scale-dependent stochastic perturbations [4]

References

Van de Vyver, H. (2013): Practical return level mapping for extreme [1] precipitation in Belgium, Publication scientifique et technique n° 62, 30 pp., IRM.

Fig. 4: Probability of 1-hour rainfall exceeding return periods of 5 (blue), 10 (green), 20 (red), 50 (magenta) years at 0745 UTC (45min forecast)

Exceedance probability for 4 return periods (panels) and for 4 forecast times (colorbars)

Fig. 5: Probability of 1-hour rainfall exceeding return periods of 5, 10, 20, 50 years for forecast times of 5min, 30min, 1h, 2h

Next steps

Van de Vyver, H. (2012): Spatial regression models for extreme [2] precipitation in Belgium, Water Resour. Res., 48, W09549, https://doi.org/10.1029/2011wr011707.

Imhoff, Ruben O., et al. (2023): Scale-dependent blending of ensemble [3] rainfall nowcasts and numerical weather prediction in the open-source pysteps library, Quarterly Journal of the Royal Meteorological Society 149.753 (2023): 1335-1364.

Alan W Seed, Clive E Pierce, and Katie Norman. "Formulation and [4] evaluation of a scale decomposition-based stochastic precipitation nowcast scheme". In: Water Resources Research 49.10 (2013), pp. 6624–6641

Include extreme rainfall warnings in the operational PySTEPS-BE Municipality scale warnings derived from 1km×1km resolution products Extreme rainfall warnings in the RMI mobile app

Acknowledgements

The project is funded by the Wallonie Region (SPW). We thank all our colleagues who contributed to establishing PySTEPS-BE as the new operational ensemble nowcasting system at the RMIB.

Royal Meteorological Institute of Belgium - https://www.meteo.be

PySTEPS - https://github.com/pySTEPS/pysteps

felix.erdmann@meteo.be ERAD, Rome – Sept. 09-13, 2024